Back to MCP Catalog

ArangoDB Integration MCP Server

DatabasesTypeScript
Interact with ArangoDB databases through MCP tools
Available Tools

arango_query

Execute AQL queries against the ArangoDB database

querybindVars

arango_insert

Insert documents into ArangoDB collections

collectiondocument

arango_update

Update existing documents in ArangoDB collections

collectionkeydocument

arango_remove

Remove documents from ArangoDB collections

collectionkey

arango_backup

Backup all collections to JSON files

outputDir

arango_list_collections

List all collections in the ArangoDB database

arango_create_collection

Create a new collection in the ArangoDB database

nametypewaitForSync

ArangoDB Integration provides a comprehensive set of tools for interacting with ArangoDB databases directly from AI assistants. It enables executing AQL queries, managing documents, creating collections, and performing database operations without writing complex code. This integration bridges the gap between natural language interactions and database management, making it easier to work with ArangoDB in conversational contexts.

Overview

ArangoDB Integration allows AI assistants to interact directly with ArangoDB databases, providing a seamless way to query, manipulate, and manage data. This integration is particularly useful for developers and data analysts who want to leverage AI assistants for database operations without switching contexts.

Installation Options

Option 1: Install via NPM (Global)

To install the ArangoDB server globally:

npm install -g arango-server

Option 2: Run via NPX (No Installation)

To run the server directly without installation:

npx arango-server

Option 3: Install via Smithery

For automatic installation with Claude Desktop:

npx -y @smithery/cli install @ravenwits/mcp-server-arangodb --client claude

Configuration

Environment Variables

The server requires the following environment variables:

  • ARANGO_URL: The URL of your ArangoDB instance (e.g., "http://localhost:8529")
  • ARANGO_DB: The name of the database to connect to
  • ARANGO_USERNAME: Username for authentication
  • ARANGO_PASSWORD: Password for authentication

Claude Desktop Configuration

To configure for Claude Desktop, edit the configuration file:

  • MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%/Claude/claude_desktop_config.json

Add the following to your configuration:

{
  "mcpServers": {
    "arango": {
      "command": "npx",
      "args": ["arango-server"],
      "env": {
        "ARANGO_URL": "http://localhost:8529",
        "ARANGO_DB": "your_database_name",
        "ARANGO_USERNAME": "your_username",
        "ARANGO_PASSWORD": "your_password"
      }
    }
  }
}

VSCode Configuration

For VSCode integration, create or edit .vscode/mcp.json in your workspace:

{
  "servers": {
    "arango-mcp": {
      "type": "stdio",
      "command": "npx",
      "args": ["arango-server"],
      "env": {
        "ARANGO_URL": "http://localhost:8529",
        "ARANGO_DB": "your_database_name",
        "ARANGO_USERNAME": "your_username",
        "ARANGO_PASSWORD": "your_password"
      }
    }
  }
}

Then start the server using the Command Palette: MCP: Start Server and select arango-mcp.

Cline VSCode Extension Configuration

For the Cline VSCode extension, edit the configuration file:

  • MacOS: ~/Library/Application Support/Code/User/globalStorage/cline.cline/config.json
  • Windows: %APPDATA%/Code/User/globalStorage/cline.cline/config.json

Add the following to the mcpServers section:

{
  "mcpServers": {
    "arango": {
      "command": "npx",
      "args": ["arango-server"],
      "env": {
        "ARANGO_URL": "http://localhost:8529",
        "ARANGO_DB": "your_database_name",
        "ARANGO_USERNAME": "your_username",
        "ARANGO_PASSWORD": "your_password"
      }
    }
  }
}

Usage Examples

Once configured, you can use the ArangoDB tools in your conversations with AI assistants:

  1. Execute a query: "Run this AQL query: FOR doc IN users RETURN doc"

  2. Insert a document: "Insert a new user with name 'John Doe' and email 'john@example.com' into the users collection"

  3. Update a document: "Update the user with key '12345' to change their email to 'newemail@example.com'"

  4. List collections: "Show me all collections in the database"

  5. Create a new collection: "Create a new collection called 'products' of type 'document'"

The AI assistant will use the appropriate tool to perform these operations and return the results.

Related MCPs

Milvus Vector Database
DatabasesPython

Connect to Milvus vector database for semantic search and vector operations

MotherDuck DuckDB
DatabasesPython

SQL analytics with DuckDB and MotherDuck for AI assistants

Alibaba Cloud Tablestore
DatabasesJava, Python

Connect to Alibaba Cloud Tablestore for vector search and RAG applications

About Model Context Protocol

Model Context Protocol (MCP) allows AI models to access external tools and services, extending their capabilities beyond their training data.

Generate Cursor Documentation

Save time on coding by generating custom documentation and prompts for Cursor IDE.