Search for documents using full text search
Search for similar vectors in a collection
List all collections in the Milvus database
Get information about a specific collection
The Milvus MCP server provides a seamless integration between LLM applications and Milvus vector database functionality. It enables AI assistants to perform vector similarity searches, manage collections, and execute queries against your vector database, making it ideal for semantic search, recommendation systems, and other vector-based applications.
The Milvus MCP server enables AI assistants to interact directly with your Milvus vector database. This integration allows LLMs to perform vector similarity searches, manage collections, and execute queries against your vector database without requiring you to build custom integrations.
Before using this MCP server, ensure you have:
The recommended way to use this MCP server is to run it directly with uv
without installation.
git clone https://github.com/zilliztech/mcp-server-milvus.git
cd mcp-server-milvus
uv run src/mcp_server_milvus/server.py --milvus-uri http://localhost:19530
Alternatively, you can configure the connection details in the .env
file in the src/mcp_server_milvus/
directory and run:
uv run src/mcp_server_milvus/server.py
Note: The .env
file will have higher priority than the command line arguments.
Install Claude Desktop from https://claude.ai/download
Open your Claude Desktop configuration:
~/Library/Application Support/Claude/claude_desktop_config.json
Add the Milvus MCP server configuration:
{
"mcpServers": {
"milvus": {
"command": "/PATH/TO/uv",
"args": [
"--directory",
"/path/to/mcp-server-milvus/src/mcp_server_milvus",
"run",
"server.py",
"--milvus-uri",
"http://localhost:19530"
]
}
}
}
Cursor Settings
> Features
> MCP
+ Add New MCP Server
buttonstdio
milvus
/PATH/TO/uv --directory /path/to/mcp-server-milvus/src/mcp_server_milvus run server.py --milvus-uri http://127.0.0.1:19530
⚠️ Note: Use
127.0.0.1
instead oflocalhost
to avoid potential DNS resolution issues.
.cursor
directory in your project root:mkdir -p /path/to/your/project/.cursor
mcp.json
file with the following content:{
"mcpServers": {
"milvus": {
"command": "/PATH/TO/uv",
"args": [
"--directory",
"/path/to/mcp-server-milvus/src/mcp_server_milvus",
"run",
"server.py",
"--milvus-uri",
"http://127.0.0.1:19530"
]
}
}
}
To verify that your application has successfully integrated with the Milvus MCP server:
Once configured, you can ask your AI assistant to perform operations like:
The AI will automatically use the appropriate Milvus tools to fulfill your requests.