Get the current Kubernetes configuration
Get a Kubernetes resource by name from the specified namespace
List Kubernetes resources of a specific kind in all namespaces or in a specific namespace
Create or update a Kubernetes resource
Delete a Kubernetes resource by name from the specified namespace
List pods in all namespaces or in a specific namespace
Get a pod by name from the specified namespace
Delete a pod by name from the specified namespace
Show logs for a pod by name from the specified namespace
Execute a command in a pod
Run a container image in a pod and optionally expose it
List Kubernetes namespaces
View Kubernetes events in all namespaces or in a specific namespace
List OpenShift projects
Install a Helm chart in the current or provided namespace
List Helm releases in all namespaces or in a specific namespace
Uninstall a Helm release in the current or provided namespace
A powerful and flexible Kubernetes Model Context Protocol (MCP) server implementation that enables AI assistants to interact with Kubernetes and OpenShift clusters. Unlike other implementations, this server doesn't rely on external command-line tools like kubectl or helm - it communicates directly with the Kubernetes API, eliminating the need for additional dependencies on your system.
The Kubernetes Manager MCP server allows AI assistants to interact with Kubernetes and OpenShift clusters, providing capabilities for resource management, pod operations, namespace/project listing, event monitoring, and Helm chart management.
The easiest way to get started with the Kubernetes Manager in Claude Desktop is using npx. Open your claude_desktop_config.json
file and add the following to the mcpServers
section:
{
"mcpServers": {
"kubernetes": {
"command": "npx",
"args": [
"-y",
"kubernetes-mcp-server@latest"
]
}
}
}
You can install the Kubernetes Manager MCP server in VS Code by running:
# For VS Code
code --add-mcp '{"name":"kubernetes","command":"npx","args":["-y","kubernetes-mcp-server@latest"]}'
# For VS Code Insiders
code-insiders --add-mcp '{"name":"kubernetes","command":"npx","args":["-y","kubernetes-mcp-server@latest"]}'
If you prefer to install the package globally:
npm install -g kubernetes-mcp-server
Then configure your MCP client to use:
{
"mcpServers": {
"kubernetes": {
"command": "kubernetes-mcp-server"
}
}
}
The server is also available as a Python package:
pip install kubernetes-mcp-server
Then configure your MCP client to use:
{
"mcpServers": {
"kubernetes": {
"command": "python",
"args": ["-m", "kubernetes_mcp_server"]
}
}
}
You can run the server in a Docker container:
docker run -v ~/.kube:/root/.kube -p 8080:8080 ghcr.io/manusa/kubernetes-mcp-server:latest
Then configure your MCP client to connect to the server at http://localhost:8080.
The server automatically detects and uses your Kubernetes configuration from:
~/.kube/config
fileKUBECONFIG
: Path to a custom Kubernetes configuration fileKUBERNETES_MCP_SERVER_PORT
: Port to run the server on (default: 8080)KUBERNETES_MCP_SERVER_MODE
: Server mode, either sse
(default) or ws
for WebSocketsOnce installed, you can ask your AI assistant to perform various Kubernetes operations. The server provides capabilities for:
Simply ask your AI assistant to perform these operations in natural language, and it will use the Kubernetes Manager MCP server to execute them.