Back to MCP Catalog

Kubernetes Manager MCP Server

Cloud PlatformsGo
Manage Kubernetes and OpenShift clusters directly from your AI assistant
Available Tools

getConfig

Get the current Kubernetes configuration

getResource

Get a Kubernetes resource by name from the specified namespace

apiVersionkindnamespacename

listResources

List Kubernetes resources of a specific kind in all namespaces or in a specific namespace

apiVersionkindnamespacelabelSelector

createOrUpdateResource

Create or update a Kubernetes resource

resource

deleteResource

Delete a Kubernetes resource by name from the specified namespace

apiVersionkindnamespacename

listPods

List pods in all namespaces or in a specific namespace

namespacelabelSelector

getPod

Get a pod by name from the specified namespace

namespacename

deletePod

Delete a pod by name from the specified namespace

namespacename

getPodLogs

Show logs for a pod by name from the specified namespace

namespacenamecontainerprevioussinceSecondstailLines

execInPod

Execute a command in a pod

namespacenamecontainercommand

runPod

Run a container image in a pod and optionally expose it

namespacenameimagecommandargsportexpose

listNamespaces

List Kubernetes namespaces

listEvents

View Kubernetes events in all namespaces or in a specific namespace

namespace

listProjects

List OpenShift projects

helmInstall

Install a Helm chart in the current or provided namespace

namechartnamespacevalues

helmList

List Helm releases in all namespaces or in a specific namespace

namespace

helmUninstall

Uninstall a Helm release in the current or provided namespace

namenamespace

A powerful and flexible Kubernetes Model Context Protocol (MCP) server implementation that enables AI assistants to interact with Kubernetes and OpenShift clusters. Unlike other implementations, this server doesn't rely on external command-line tools like kubectl or helm - it communicates directly with the Kubernetes API, eliminating the need for additional dependencies on your system.

Overview

The Kubernetes Manager MCP server allows AI assistants to interact with Kubernetes and OpenShift clusters, providing capabilities for resource management, pod operations, namespace/project listing, event monitoring, and Helm chart management.

Installation

Claude Desktop

The easiest way to get started with the Kubernetes Manager in Claude Desktop is using npx. Open your claude_desktop_config.json file and add the following to the mcpServers section:

{
  "mcpServers": {
    "kubernetes": {
      "command": "npx",
      "args": [
        "-y",
        "kubernetes-mcp-server@latest"
      ]
    }
  }
}

VS Code / VS Code Insiders

You can install the Kubernetes Manager MCP server in VS Code by running:

# For VS Code
code --add-mcp '{"name":"kubernetes","command":"npx","args":["-y","kubernetes-mcp-server@latest"]}'

# For VS Code Insiders
code-insiders --add-mcp '{"name":"kubernetes","command":"npx","args":["-y","kubernetes-mcp-server@latest"]}'

Using npm

If you prefer to install the package globally:

npm install -g kubernetes-mcp-server

Then configure your MCP client to use:

{
  "mcpServers": {
    "kubernetes": {
      "command": "kubernetes-mcp-server"
    }
  }
}

Using Python

The server is also available as a Python package:

pip install kubernetes-mcp-server

Then configure your MCP client to use:

{
  "mcpServers": {
    "kubernetes": {
      "command": "python",
      "args": ["-m", "kubernetes_mcp_server"]
    }
  }
}

Using Docker

You can run the server in a Docker container:

docker run -v ~/.kube:/root/.kube -p 8080:8080 ghcr.io/manusa/kubernetes-mcp-server:latest

Then configure your MCP client to connect to the server at http://localhost:8080.

Configuration

The server automatically detects and uses your Kubernetes configuration from:

  • The standard ~/.kube/config file
  • In-cluster configuration when running inside a Kubernetes cluster
  • Custom configuration specified via environment variables

Environment Variables

  • KUBECONFIG: Path to a custom Kubernetes configuration file
  • KUBERNETES_MCP_SERVER_PORT: Port to run the server on (default: 8080)
  • KUBERNETES_MCP_SERVER_MODE: Server mode, either sse (default) or ws for WebSockets

Usage

Once installed, you can ask your AI assistant to perform various Kubernetes operations. The server provides capabilities for:

  1. Configuration Management: View and manage Kubernetes configuration
  2. Resource Operations: Perform CRUD operations on any Kubernetes resource
  3. Pod Management: List, get, delete, view logs, exec into, and run pods
  4. Namespace/Project Management: List Kubernetes namespaces or OpenShift projects
  5. Event Monitoring: View Kubernetes events
  6. Helm Operations: Install, list, and uninstall Helm charts

Simply ask your AI assistant to perform these operations in natural language, and it will use the Kubernetes Manager MCP server to execute them.

Related MCPs

AWS CLI
Cloud PlatformsPython

Execute AWS CLI commands securely through AI assistants

Kubernetes
Cloud PlatformsGo

Connect to and manage Kubernetes clusters through natural language

Cloudflare
Cloud PlatformsTypeScript

A Model Context Protocol server for Cloudflare services

About Model Context Protocol

Model Context Protocol (MCP) allows AI models to access external tools and services, extending their capabilities beyond their training data.

Generate Cursor Documentation

Save time on coding by generating custom documentation and prompts for Cursor IDE.